Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus

Project ID: LM001

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start Oct. 2008
- Finish Task order funded

Budget

- Total project funding
 - \$300K (FY'08 & FY'09 Combined)
 - \$150K/year (FY'10)
 - \$285K (FY'11) [\$75K for baseline multi-material vehicle cost model development]
- Funding also supported
 - Lightweighting potential of pickup trucks
 - Cost-effectiveness of Solid Oxide Membrane (SOM) primary magnesium production technology

Partners

Natural Resources Canada

Barriers

- Examine materials solutions supported by Materials Technology Program addressing industry's desire for reduced cost of lightweight materials while meeting national objectives for improved fuel economy
- Specific technology improvements affecting major cost drivers detrimental to the technology viability
- Economic viability in most cases determined on the basis of part by part substitution
- OEMs' focus on vehicle retail price instead of life cycle cost consideration

Study Objective

Develop a baseline cost model for a multi-material vehicle to facilitate the development and validation of the cost-effectiveness of various multi-year Lightweight Materials body and chassis weight reduction goals from a system perspective (\$75K)

- Supports National Academy recommendation to develop a systemsanalysis methodology to determine the most cost-effective path for achieving a 50% body and chassis weight reduction for hybrid and fuel cell vehicles by 2015
- Other life cycle modeling studies supported during this FY include
 - Lightweighting potential of pickup trucks (\$50K)
 - Cost-effectiveness of Solid Oxide Membrane (SOM) primary magnesium production technology (\$60K)

Milestones

- Complete the cost-effectiveness analysis of 50% body and chassis weight reduction goal (Completed May '10)
- Complete the life cycle energy and CO2 analysis of solid oxide membrane primary magnesium production technology (Completed Oct. '10) – Results Presented
- Complete the development of the cost modeling framework, vehicle system definition, and identification of vehicle mass and cost data for a baseline multi-material vehicle cost model (Completed Mar'11) – Presentation Focus
- Complete the development of a baseline multi-material vehicle cost model (Sept.'11)
- Complete the lightweighting potential of pickup trucks (Sept.'11) – Approach Presented
- Complete the cost-effectiveness analysis of MOxST primary magnesium production technology (Sept.'11)

Approach

- Composite 2002 Baseline Vehicle Midsize sedan based on following EPA-listed average vehicle technology characteristics
 - Curb Weight: 3249 lbs (includes 14.5 gallons of fuel); Interior Volume: 114.8 cu-ft
 - Engine (177 CID, 185 HP, Port Fuel Injected, V6 Aluminum, 4 Valves per Cylinder, Naturally aspirated (No Turbo))
 - Transmission (Front Wheel Drive, Locking Automatic)
 - Fuel Economy and Acceleration (22.4 MPG, 9.8 secs. 0-60 time, Top Speed 134 MPH)
 - Other major vehicle component technology characteristics based on average 2002 midsize sedan technology trends
- Component mass breakdown based on the average vehicle teardown data from the 3 predominate OEM vehicles in model year 2002 available in A2mac1 database
- Component aggregation based on the principle of fair representation of major technologies at a level of five major systems comprised of 35+ components (similar to Uniform Parts Grouping (UPG) concept used by the industry today)

ORNL Automotive System Cost Model (ASCM)

- ORNL Automotive System Cost Model (ASCM) is a system-level vehicle cost estimation tool capable of considering 13 EPA light-duty vehicle classes of several advanced powertrain types
 - Estimates vehicle life cycle cost at a level of five major subsystems and 35+ components, each representing a specific manufacturing technology
 - A standalone spreadsheet-based model with sizing and cost estimation capability
 - Interrelationships among subsystems considered in terms of secondary mass savings/ mass decompounding effect
 - Vehicle subsystem technology representation at a macro level but detailed enough to estimate vehicle cost sensitivity
 - Financing, insurance, local fees, fuel, battery replacement, maintenance, repair, and disposal costs are explicitly considered for the life cycle cost estimation (fuel economy input to the model)
 - Allows relative production cost estimation via a uniform estimation methodology--facilitates comparison of major component level alternative technologies considered by the industry

Vehicle Life Cycle Cost Estimation

Vehicle MSRP

Vehicle production cost reflects OEM cost for 35+ parts purchased directly from suppliers and vehicle assembly

Production

Manufacturing

Warranty

Depreciation/Amortization

R&D and Engineering

Selling

Distribution

Advertising & Dealer Support

Administration and Profit

Corporate Overhead

Profit

GREEN=Considered in production cost PURPLE=OEM indirect costs

BLACK=Selling costs

Vehicle operation and maintenance costs include

- Financing down payment, loan life, loan rate
- Insurance MSRP
- Maintenance & repair AVTAE data, Complete Car Cost Guide
- Fuel Calculated/User Input
- Local Fees curb mass
- Disposal MSRP, parts recycled

Vehicle Life Cycle Cost per Vehicle and Mile

Technical Accomplishments & Progress

- In FY '10 analyzed cost-effectiveness of LM 50% body and chassis weight-reduction goal and conducted a comparative life cycle assessment of magnesium vs. steel front-end
- Vehicle life cycle cost equivalence for achieving 50% body and chassis weight reduction goal can be achieved with
 - Secondary mass savings consideration
 - Lower material prices (e.g., aluminum ingot \$1/lb; carbon fiber \$5/lb)
 - High fuel price (\$3-\$4/gallon)
- Improvements in primary metal production and end-of-life recycling are necessary to improve magnesium life cycle footprint
- FY11 progress extends past FY initiatives
 - Development of a new 2002 baseline multi-material vehicle cost model to evaluate cost-effectiveness of various multi-year LM weight reduction goals
 - Life cycle analysis of alternative primary magnesium production technology

Components Considered for Vehicle Cost Modeling – Baseline Vehicle Curb Weight Distribution

I. Powertrain

- Engine
- Fuel Cell System
- Generator
- Motor
- Controller/Inverter
- Energy Storage
- Fuel System
- Transmission
- P/T Thermal
- Driveshaft/Axle
- Differential
- Cradle
- Exhaust System
- Oil and Grease
- Powertrain Electronics
- Emission Control Electronics

II. Chassis

- Corner Suspension
- Braking System
- Wheels and Tires
- Steering System

Vehicle Curb Weight: 3249 Kg

■ Powertrain
■ Body
□ Chassis
□ Interior
■ Electrical
■ Assembly

III. Body

- Body-in-White
- Panels
- Front/Rear Bumpers
- Glass
- Paint
- Exterior Trim
- Body Hardware
- Body Sealers and Deadeners

IV. Interior

- Instrument Panel
- Trim and Insulation
- Door Modules
- Seating and Restraints

V. Electrical

Interior Chassis Exterior

VI. Assembly

Component Cost Data

- Only "first order" subsystem-level costs are addressed in terms of relationships to primary drivers
 - Example: BIW \$=f(material price, mass, piece count)
 - Material property and weight-reduction considerations are included in user-input aggregate component-specific technology data
- Data sources
 - Primary benchmarking data from vehicle teardown studies and interviews of technology proponents
 - Published data from open literature
 - Regression of case study data
 - Calculations & estimations based on relevant comparisons
 - Actual cost estimation of technologies under development
- OEM/supplier data sources critical for model validation and data collection activities (less important when focus is on examination of relative impacts of competing manufacturing technologies)
- "Open code" provides for dynamic source for cost-effectiveness data
 - Users see design logic
 - Facilitates future updates and enhancements as manufacturing technology matures and material prices change
 - Includes new component-manufacturing technologies (ongoing VT R&D technology activities' data)

Lightweight Component Cost Estimates

Lightweight Material Body-in-White Cost Sensitivity to Annual Production Volume

200

Aluminum Vs. CF Composite Body-in-White Viability

Annual Production Volume (K)

100

(steel: \$0.25/lb; aluminum: \$1.50/lb; carbon fiber: \$8/lb)

0

0

300

Comparative Life Cycle Assessment of Primary Magnesium Production Technologies

- Relatively less-environmentally-friendly Chinese Pidgeon process provides 80% of world magnesium.
- A simple, electrochemical magnesium production process—solid oxygen-ion conducting membrane (SOM)—developed by Uday Pal of Boston Univ.
 - Uses electricity to split magnesium oxide in a molten salt bath into magnesium vapor and oxygen gas
 - Replaces intensive magnesium chloride dehydration necessary for the conventional electrolyte process with a simple Mg(OH)₂ or MgCO₃ calcining operation
 - High-purity valuable by-product oxygen collected at yttria-stabilized zirconia membrane and a contact material (serving as an anode)
 - Metal Oxygen Separation Technologies (MOxST) LLC is currently involved in the scale-up production operation
- A comparative life cycle assessment of SOM with conventional electrolytic and Pidgeon processes includes both primary energy and CO2 emissions
 - SOM processing technology data based on actual experimental data
 - SimaPro a commercial LCA software package used for life cycle analysis

Source: Powell et. al (2010)

Comparative Life Cycle Impacts of Primary Magnesium Production Technologies

- SOM is the least energy-intensive primary magnesium production technology, 54% lower than western electrolytic process (mainly due to 42% lower energy reqt. during electrolysis)
- GHG emissions for SOM are 29% lower than western electrolytic process and are equally distributed between magnesite calcination and MgO electrolysis processing steps
- Change in source of electricity assumption from hydroelectric to U.S. grid mix electricity doesn't affect the overall environmentalfriendliness of SOM technology

Life Cycle Impacts of Magnesium Automotive Front End Application

Impact Category	All Steel	100% Pidgeon	80% Pidgeon + 20% Western Electrolytic	100% SOM
Primary Energy(MJ)	48,679	43,512	41,533	32,284
GHG (kg CO ₂ eq)	3,931	3,740	3,473	2,506

- Magnesium front end weighs 45.2 kg, compared to 82.2 kg for steel baseline for a GM-Cadillac CTS application
- Primary energy and GHG emissions are 22% and 28% lower, respectively, with SOM process than with 80:20
 Pidgeon:Western electrolytic production mix used today
- Environmental friendliness of SOM will significantly improve the viability of magnesium as a potential substitution material for aluminum in automotive applications

Lightweighting Potential of Light-Duty Pickup Trucks

- Midsize pickup truck weight has steadily increased whereas fuel economy has shown upward trend during the last five years
- Lighweighting opportunities will be examined at the level of major body and chassis components and by four lightweight material types, i.e., AHSS, aluminum, magnesium, and glass- and carbon-fiber polymer composites
- Total intermediate and final multi-year body and chassis weight reduction targets will be developed on the basis of demonstrated technical feasibility of multi-material substitution of major pickup truck components

Collaborations

- Natural Resources Canada a collaborative research effort on the life cycle analysis of multi-materials vehicle using advanced powertrains
- Metal Oxygen Separation Technologies (MOxST) LLC costeffectiveness of alternative Solid Oxygen Ion Membrane (SOM) primary magnesium production technology
- Purdue University and Pacific Northwest National Laboratory cost-effectiveness of alternative Large Strain Extrusion Machining (LSEM) primary magnesium production technology
- Numerous tiered automotive suppliers for vehicle component cost verification necessary for baseline vehicle cost model development

Proposed Future Work

- Development and validation of cost-effectiveness of various weight reduction goals (25%, 40%, and 50%) of a multi-material midsize vehicle
- Viability of lightweight materials in advanced powertrains such as hybrids and fuel cell vehicles
- Cost-effectiveness of multi-year weight reduction goals of lightweihgitng of Class 1-2 pickup trucks
- Economic, energy, and environmental impact analyses from a life cycle perspective of lightweight material manufacturing technologies with an emphasis on magnesium and carbon-fiber polymer composites
- Recycling of lightweight materials from an economic, energy, and environmental life cycle perspective
- Lightweight material potential in heavy-duty vehicles
- Carbon fiber production cost as a function of processing throughput and/or speed for different precursors and processing technologies

Summary

- Development of a baseline cost model for a multi-material vehicle with a representation of alternative technologies at the major component level is critical for the evaluation of cost-effective weight reduction strategy
- Life cycle cost consideration from a systems-level analysis
 perspective is essential in the evaluation of cost-effectiveness of
 vehicle lightweighting opportunities. Component cost representation
 should reflect the sensitivity of major parameters rather than absolute
 cost/price.
- Body and chassis component masses comprise 51% of total vehicle curb mass – significant multi-material lightweighting opportunities exist on the basis of primary component mass savings alone
- Lightweighting opportunity for improving fuel economy of light-duty pickup trucks could be substantial since unlike other vehicle types options are limited (reduction in size is not a viable option)
- Alternative solid oxygen—ion conducting membrane primary magnesium production technology is favorable in terms of both life cycle energy and emissions

